
IEC 61850, Applications and Benefits, Testing of Devices, Distributed Functions and

Systems

Design and Automatic Testing of IEC 61850 Substation Automation

Systems

Ubiratan Carmo
1
, Jacques Sauvé

2
, Wagner Porto

2
 , Iony Patriota

1
, Tadeu Pereira

1
,

1
Companhia Hidro-Elétrica do São Francisco,

 2
Federal University of Campina Grande

Brazil

uacarmo@chesf.gov.br

1 - INTRODUCTION

This paper describes a proof-of-concept software tool that enables automation
engineers to build, run and debug functional tests for IEC 61850-based systems in a
simulated environment using the test philosophy proposed by Cigre WG B5.32 . The paper is
structured as follows. Section 1.1 described the work of Cigré WG B5.32 on Functional
testing and section 1.2 describes the problems that this paper discusses. Section 2 describes
the architecture and prototype of the tool. Section 3 describes a smash specification. Section
4 an example of a functional test and smash application and finally Section 5 give the
conclusion and provides ideas for future directions.

1.1 Context: Testing IEC 61850 systems

The introduction of the IEC 61850 has resulted high added value in the implementation of

Substation Automation Systems (SAS). However, although conformance and interoperability tests are

subject to standardized approaches, functional and performance testing are not yet subject to

standards. Cigré Workgroup B5.32, entitled Functional Testing of IEC 61850-Based Systems was

formed in 2006 to propose a solution for such testing activities.

The approach taken by WG B5.32 revolves around black-box testing which is a quality

assurance process that verifies that an application’s functionality works accurately, reliably, predictably

and securely [1]. Functional testing consists of a series of tests that emulate the interaction between

IEC 61850 intelligent electronic devices (IEDs) and the application in order to verify whether or not the

application does what it was designed to do. The proposed solution allows the construction of “test

scripts” that can verify functional behavior and performance characteristics.

The solution proposed by WG B5.32 is being submitted to IEC for standardization in the near

future.

1.2 The problems

Two problems have been identified and are the reason for implementation this tool:

1. The work done by WG B5.32 needs a proof-of-concept implementation to test its viability in
practice.

2. A very useful extension to the testing process can be performed by analyzing the test results and
producing a diagnosis of where faults may reside in an SAS.

The paper describes the architecture and preliminary results of a software solution to these

problems called Smash.

mailto:uacarmo@chesf.gov.br

2 SMASH (SAS TEST AND FAULT DIAGNOSIS) TOOL

The SAS Test and Fault Diagnose Tool named (SMASH), establishing a simulation environment of a
SAS where the IEDs use IEC 61850 to perform the communication between them. The smash have
the capacity to create a SAS environment simulation that is formed by LNs and substation
information read of a SCD file . The LNs are components that simulate the behavior of functions such
as differential protection (PDIF), circuit breakers (XCBR), etc..., and realize the communication
between them using the 61850 standard specification. The new LNs can be added by third parties to
the smash tool.

The smash simulation environment is formed with functional components named SAS , Process
Simulator (current Output), Time Control, Test Schedule, Network Simulator, Configuration Loader
and Script Load. The Smash architecture is shown in Figure 5.. The definition of Smash component is
conform the specification WG B5.38 brochure. And can be resumed as following:

 The SAS component are formed by LN and communication bus. The LNs are “active” classes,
meaning that they run in a separate thread. This enables time delays to be introduced in their
behaviors. The main data structures are the LNs themselves as well as the Configuration
component containing an in-memory version of the SCL file and a Script component
containing an in-memory version of the script being executed

SAS

CurrentOutput

Script Loader

Configuration

Loader

Script

Configuration

<<active>>

TestScheduler

Time Control Operator

Bus

<<active>>

Logical Node

<<active>>

Logical Node

Network

Simulator

TestTimer

SCL file

Script File

Figure 5: Smash Architecture

All Publish-Subscribe communication between LNs and other test components is controlled by
a common bus. This allows the simulated environment to include network delays in the
simulation.

 The Process Simulator is a package of classes to emulate the signals that are received and
sent from and to the process. These include classes to monitor and send analog, digital and
sampled values and messages [1].

 The Network Simulator is a package of classes to supervise and generate network messages
related to any logical node. These include methods used to monitor and send network
messages containing sampled and digital values.

 The Test Timer is a package of classes to support time related operations, such as real time
clocks, timer start and stop, event timing and tagging. It is formed mainly by a class TestTimer
derived from a Timer interface, as defined on UML Test Profile.

 The Test Scheduler is a package of classes to start, stop and sequence the steps of a
functional testing. It is formed mainly by a class TestScheduler derived from a Scheduler
interface, as defined on UML Test Profile.

 Finally the Test Arbiter is a package of classes to avail the results of any test sequence. It is
formed mainly by a class TestArbiter derived from an Arbiter interface, as defined on UML
Test Profile. For more detail about this class you can consult the [1].

Simulated time control is provided by the Time Control component. This is where speed
control is implemented. All components requiring time service must interface with this
component. The TestScheduler is the main simulator that interprets and executes script
commands.

3 SMASH SPECIFICATION.

The smash functionality of the smash are illustrated as the following specification:

 In a first phase, the system will be used to build and debug tests in a simulated SAS

environment only. In a second phase, the system may be used during actual operation on a

real SAS, by injecting actual messages at appropriate SAS access points, recording

appropriate messages and evaluating the performance and functionality through test scripts.

 The system execute test scripts and report on the test verdicts. There is full support for all

B5.32 test objects (VoltageOutput, CurrentOutput, DigitalInput, DigitalOuptut,

NetworkSimulator, Operator, TestTimer, TestScheduler, TestArbiter).

 The SAS is represented by a model and simulated during execution.

 The LNs most commonly used in SAS design is supported.

 The design is component-oriented to allow third parties to develop new LNs and plug them

into the system.

 The system provide test script management (script creation, visualization, editing, removal)

 The tool read in SAS models provided in IEC 61850 Substation Configuration Language (SCL)

 The tool provide for visualization and editing of test scripts in a script language and also in

XML.

 The tool provide automatic conversion between the script and XML versions of a test.

 The tool perform syntax checking during script editing.

 The test execution environment provide

o Execution command: Run all, Run selected, Pause, Stop.

o Debugging mode (Run debug, breakpoints, single step, variable watch)

o Simulated time speed control to accelerate or decelerate the simulation as compared

to real time.

 The execution environments provide mechanisms for the insertion of faults

 The tool must fault diagnosis functionality through an automatic fault diagnosis algorithm, thus

allowing the source of faults to be pinpointed, down to the level of Logical Node.

4 FUNCTIONAL TESTING EXAMPLE

We choice the same SAS differential example used by WG B5.32 for a brief sketch of an this

test scenario, can be given here. Please refer to the full WG B5.32 technical brochure for details [1].

The motivation for providing this example is to give the reader unfamiliar with WG B5.32’s proposal an

outline of the approach so that the rest of the paper may be better understood. The approach is

object-oriented and UML, text and XML formats to specify the applications through Functional Use

Cases and other Functional Specification documents. We do not show all these documents here due

to lack of space. Consider the substation layout diagram shown in Figure 1.

Figure 1: Example substation layout diagram

The functional specification of the system may include Functional Implementation Conformance

Statements (not shown), specifying, for example, that XCBR1 and XCBR2 must trip in less than 100

ms upon inception of an internal short circuit in the transformer. In addition, other UML diagrams may

be used in the functional specification. For example, a UML communication diagram is shown in

Figure 2 and a UML sequence diagram is shown in Figure 3. In Figure 3, the numbers shown are

PICOM messages types (12=Operated, 22 = Trip, etc.). The left-hand side of the figure also shows the

performance requirements as time delay restrictions.

Figure 2: Functional specification by UML communication diagram

Figure 3: Functional specification by UML sequence diagram

We now move on to the specification of functional tests. WG B5.32 recommends that Failure

Modes and Effects Analysis (FMEA) and Hazard and Operability Analysis (HAZOP) be used tools to

drive the design of tests and also to investigate the fault coverage attained by test plans. WG B5.32

has suggested a test architecture consisting of several test components used in automatic testing

activities. Figure 4 shows the testing objects instantiated from the test device classes necessary to

test this example SAS. The figure also shows their connection to the SAS Logical Nodes (LN).

Figure 4: Test setup as a UML communication diagram

Reference [1] describes this setup as follows: “Note that each breaker is modeled by a

DigitalOutput and a DigitalInput object, to simulate their command and response messages, while

each current transformer is modeled by a CurrentOutput object, to simulate their sampled currents. A

network simulator (or analyzer) is instantiated and assigned to monitor the messages related to logical

node PDIF, to measure its response time. Messages sent and/or received by the operator are

modeled by an Operator object. This setup can be described more fully as a functional test case [1].

This is shown below] for the three functions specified in this example SAS.” As one can see, test

scripts can specify signals to be injected in the system as well as signals to be expected. The

functional test specification is divided into the following parts: test connection, test setup, test start,

test stop, test disconnection and test verdict. The table 1 illustrate the test scrip for the example

subject this paper.

Each command in this script is a method call supported by the instantiated class. The last 7

commands (verdicts) evaluate the results of the test case. These commands check the time

performance of the SAS against the specification (<100ms), as well as operator notification of breaker

trippings and operation of the differential protection. Test cases can also be specified in XML.

Table 1: Example test script of SAS with differential relay

Test Connection

1.1 Timer1 = TestTimer() Create a timer to measure events

1.2 Arbiter1 = TestArbiter () Create a test arbiter to emit verdicts

1.3 Xcbr1_In = DigitalInput (XCBR1) Create a digital input connected to XCBR1

1.4 Xcbr1_Out = DigitalOutput (XCBR1) Create a digital output connected to XCBR1

1.5 Tctr1 = CurrentOutput (TCTR1) Create an analog output connected to TCTR1

1.6 Tctr2 = CurrentOutput (TCTR2) Create an analog output connected to TCTR2

1.7 Xcbr2_In = DigitalInput (XCBR2) Create a digital input connected to XCBR2

1.8 Xcbr2_Out = DigitalOutput (XCBR2) Create a digital output connected to XCBR2

1.9 Pdif = NetworkSimulator (PDIF) Create a network simulator linked to PDIF

1.10 Operator1 = Operator (IHMI) Create an operator connected to IHMI

Test Setup

2.1 Xcbr1_Out->SetDigitalOutput (1) Prepare to close breaker XCBR1

2.2 Xcbr2_Out->SetDigitalOutput (1) Prepare to close breaker XCBR2

2.3 Xswi_Out->SetDigitalOutput (1) Prepare to close switch XSWI

2.4 Tctr1->SetACCurrentOutput (0,0) Prepare to zero current on node TCTR1

2.5 Tctr2->SetACCurrentOutput (0,0) Prepare to zero current on node TCTR2

2.6 Xcbr1_Out->StartDigitalOutput () Close breaker XCBR1

2.7 Xcbr2_Out->StartDigitalOutput () Close breaker XCBR2

2.8 Tctr1->StartCurrentOutput () Zero current on transformer TCTR1

2.9 Tctr2->StartCurrentOutput () Zero current on transformer TCTR2

2.10 Pdif->GetMessageSequence (1min) Record messages for 1min to and from PDIF

2.11 Xcbr1_In->GetDigitalIinputSequence (1min) Record input sequence for 1min from XCBR1

2.12 Xcbr2_In->GetDigitalIinputSequence (1min) Record input sequence for 1min from XCBR2

Test Start

3.1 Tctr1->SetACCurrentOutput (5,0) Prepare 5A on current on transformer TCTR1

3.2 Timer1->Start () Start time to measure function delays

3.3 Pdiff->StartNetworkSimulator() Start recording messages to/from PDIFF

3.4 Time1=Tctr1->StartCurrentOutput () Apply 5A to node TCTR1 and record time

Test Stop

4.1 Wait (2min) Wait for 2min without processing the script

4.2 Tctr1->SetACCurrentOutput (0) Prepare to zero current on node TCTR1

4.3 Tctr1->StartCurrentOutput () Zero current on transformer TCTR1

4.4 Pdiff->StopNetworkSimulator() Stop recording messages to/from PDIFF

Test Disconnection

5.1 Time2 = Pdif->FirstPICOMTo (CSWI1,22) Get time of first trip from PDIF to CSWI1

5.2 Time3 = Pdif->FirstPICOMTo (CSWI2,22) Get time of first trip from PDIF to CSWI1

5.3 Time4 = Xcbr1_In->FirstDownInputTransition

()

Get time of opening of breaker XCBR1

5.4 Time5 = Xcbr2_In->FirstDownInputTransition

()

Get time of opening of breaker XCBR2

Test Verdict

6.1 Verdict1 = Arbiter1->TestArbiterConfirm

(Time2-Time1 <100)

Trip of PDIF to CSWI<100ms

6.2 Verdict2 = Arbiter->TestArbiterConfirm (Time3-

Time1<100)

Trip of PDIF to CSW2<100ms

6.3 Verdict3 = Arbiter->TestArbiterConfirm (Time4-

Time1<100)

Trip of breaker XCBR1<100ms

6.4 Verdict4 = Arbiter->TestArbiterConfirm (Time5-

Time1<100)

Trip of breaker XCBR2<100ms

6.5 Verdict5 = Operator1->OperatorConfirm

(“PDIF Trip”)

Confirm PDIF trip indication

6.6 Verdict6 = Operator1->OperatorConfirm

(“XCBR1 Trip”)

Confirm XCBR1 trip indication

6.7 Verdict7 = Operator1->OperatorConfirm

(“XCBR2 Trip”)

Confirm XCBR2 trip indication

4.1 Testing IEC 61850 SAS transform bay

The first step to use the smash is and open an existing project or create a new project. Note to the
creation of a new project you must have in hand scl files, test scripts and test requirements. The figure
04 illustrate a smash use interface after open or create new project.

Note that after you upload or creating the project the smash interface (test windows, properties
windows, edit windows, fault windows and) show the various elements of the project. In the script
windows we can see and edit the scripts test.

Figure 4: Smash Main Screen

Other interesting smash’s functionality is that the user can force error in the IED communication
through the fault windows. The spot mark with color red identify the script verdict that is in failure [2].
The figure 05 illustrate a script that had a real verdict failure or a verdict failure caused by the user.

Figure 8: Depicting Test Script Verdicts

The smash’s user has the ability to introduce break point when the smash tool is in debug operation
mode. The figure 06 illustrate smash script using a break point (color yellow and brow) to asset the
functionality failure in the smash’s debug mode.

Figure 9: Smash breakpoints

The smash tool also have the capability to show to the user a GOOSE map where the user can see
the GOOSE IN and GOOSE out by IED. The GOOSE map is a kind of wire “From/To” table used by
the commissioning team for long time. The figure 10 illustrate the GOOSE map created by the smash
tool.

Figure 9: Smash GOOSE map

5 CONCLUSION AND FUTURE WORKS

As illustrated in this paper the tool smash made SAS simulation of the example of the transformer bay

studied by the WG B.32 Cigré attesting to full compliance as specified in the brochure produced by

this working group.

News testing shall be performed by Hidroelectric Company of San Francisco – CHESF and Campina

Grande Federal University - UFCG using real SAS scenarios and the test scripts adhering to these

scenario in order to test the performance and scalability of the smash tool.

The problem we set out to solve is to provide a proof-of-concept implementation of a tool to help

automation and protection engineers design and test SASs.

6 ABSTRACT

This paper discusses the design and effectiveness of a tool meant to ease the design and test of IEC

61850 systems. The tool is based on the work of CIGRÉ group B5.32. The B5.32 script language is

fully supported by Smash, thus allowing the substation automation engineer to test the SAS design in

simulated mode. Smash offers a syntax-driven editor to build test scripts.

Also the Smash offers several views of the SCL files to ease understanding. For example, a table

offers a view of GOOSE messages exchanged by logical nodes, logical device datasets, etc.

Smash can be connected to the substation network and interfaces itself to test boxes. There are two

ways to perform tests on a real SAS. First, Smash can convert the B5.32 test scripts to the test box's

script language and let the test box run tests; second, Smash can remain in full control of testing,

letting the test box merely generate the required signals to the SAS.

The importance of the above features is that an SAS can now be designed and tested before any

implementation and commissioning is performed. Additional testing is then done during

commissioning. Furthermore, we expect that, if the B5.32 work is successfully accepted by the

community, the specification of an SAS will be possible by providing SCL and tests scripts which will

serve not only as a design specification but also as a set of acceptance tests run during

commissioning.

7 REFERENCES

[1] Functional Testing of IEC 61850-Based Systems Technical Brochure, Cigré Workgroup B5.32,

December 2008.

[2] Smash User Handbook, Version 4.0,CHESF – UFCG, November 2009.

8 BIOGRAPHY

Ubiratan Alves do Carmo, born Brazil, on April 03, 1955. He graduated in Electrical Engineering from

Universidade Federal de Pernambuco - UFPE in 1979 and won the title of Master in Computer

Science from UFPE in 2003. She currently works in the Hydroelectric Company of San Francisco -

CHESF since the year 1980 and holds the post of manager of the Measurement and Process Control

Division - DOMC. Member CIGRÉ and IEEE since 2003. Actually is member of B5 JWG D2-B5-30 -

Communications for HV Substation Protection & Wide Area Protection Applications.

